

Herramientas y metodologías ecotoxicológicas para la evaluación del impacto de contaminantes emergentes

Teresa Neuparth, Susana Barros e Miguel Santos

tneuparth@ciimar.up.pt

Grupo de InvestigaçãoDisruptores Endócrinos e
Contaminantes Emergentes

Vigo, 29 de outubro de 2025

Contaminantes de Preocupação Emergentes (CECs)

- Recentes ou de preocupação recente detetados nos ecossistemas aquáticos em concentrações baixas (ng/L - μg/L)
- → Não incluídos na maioria dos programas de monitorização ou na regulamentação ambiental
- → Efeitos adversos em organismos não-alvo
- → Conhecimento sobre a persistência e o risco dos CECs ainda limitado

Que ferramentas/metodologias são usadas na avaliação do impacto dos CECs?

Avaliação faseada do impacto dos CECs no meio aquático

Avaliação gradual dos potenciais riscos ambiental dos CECs

- Otimização de recursos
- Redução de bioensaios com animais
- Foco CECs com relevância ecológica

Aumento da complexicidade Relevância ambiental

Nível 4 validação Ecológica

Nível 3

Validação Toxicológica Validação Mecanística

Nível 2

Screening de Toxicidade Predição Mecanistica

Nível 1

Identificação e Priorização

Exemplo: Nível 1 - Identificação e Prioritização

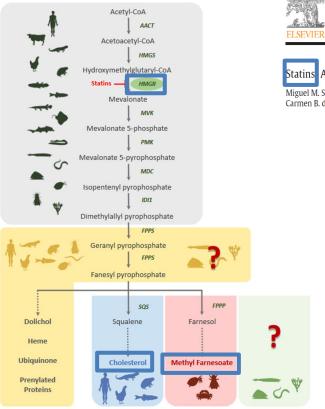
Nível 3

Validação Toxicológica Validação Mecanística

Nível 2

Screening de Toxicidade Predição Mecanistica

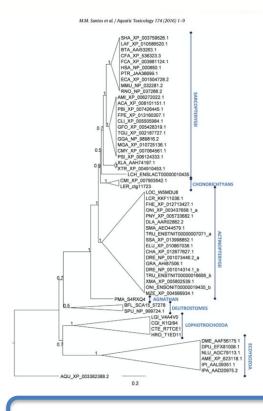
Nível 1


Identificação e Priorização

- Revisão da literatura
- Predição in silico (QSARs)
- Análise filogenética
- Docking molecular

Exemplo: Nível 1 - Identificação e Prioritização

Via do Mevalonato


Será que a HMGR é inibida nos metazoários expostos a estatinas?

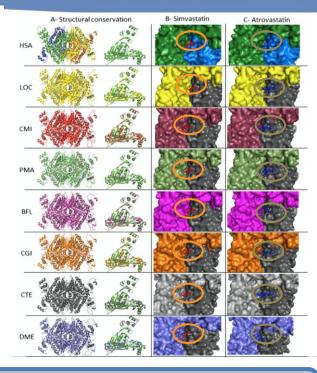
Múltiplos grupos de metazoários
Análise filogenética
Modelação por homologia
Docking molecular

Exemplos: Nível 1 - Identificação e prioritização

Aquatic Toxicology 174 (2016) 1-9

Contents lists available at ScienceDirect

Aquatic Toxicology


journal homepage: www.elsevier.com/locate/aquatox

in undesirable class of aquatic contaminants?

antos ^{a,b,*}, Raquel Ruivo ^a, Mónica Lopes-Marques ^{a,c}, Tiago Torres ^a, le los Santos ^a, L. Filipe C. Castro ^{a,b}, Teresa Neuparth ^a

A **árvore filogenética** mostra a presença de ortólogos da HMGR em várias espécies representativas dos Metazoários

Modelação por homologia : Prever a estrutura quaternária Doking molecular : Prever a afinidade de ligação de estatinas à HMGR de diferentes linhagens animais

Exemplos: Nível 1 - Identificação e prioritização

Statins: An undesirable class of aquatic contaminants?

Miguel M. Santos ^{a,b,*}, Raquel Ruivo ^a, Mónica Lopes-Marques ^{a,c}, Tiago Torres ^a, Carmen B. de los Santos ^a, L. Filipe C. Castro ^{a,b}, Teresa Neuparth ^a

- A inibição da HMGR pelas estatinas ocorre transversalmente nos Metazoa, afetando espécies não-alvo
- Este tipo de ferramentas devem ser usadas para outros CECs ajudando no desenho das ferramentas a usar nos níveis superiores da avaliação do impacto dos CECs

Exemplos: Nível 2 – Bioensaios de toxicidade aguda

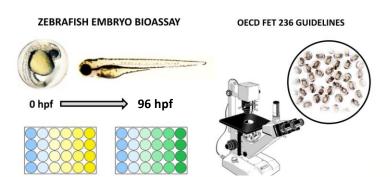
- Ensaios in vitro
- Ensaios de toxicidade aguda

Exemplos: Nível 2 – Bioensaios de toxicidade aguda

Chemical Engineering Journal 430 (2022) 132639

Contents lists available at ScienceDirect

Chemical Engineering Journal


journal homepage: www.elsevier.com/locate/cej

A Novel ceramic tubular membrane coated with a continuous graphene-TiO₂ nanocomposite thin-film for CECs mitigation

Pedro H. Presumido ^a, Lucrécio F. dos Santos ^b, Teresa Neuparth ^c, Miguel M. Santos ^{c,d}, Manuel Feliciano ^e, Ana Primo ^f, Hermenegildo Garcia ^f, Maja B. Đolić ^g, Vítor J.P. Vilar ^{a,*}

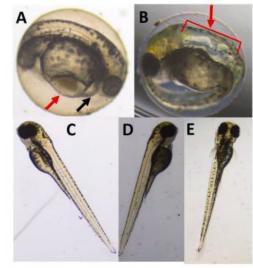


Fig. 7. Abnormalities observed in the zebrafish embryo bioassay: Pericardial oedema – black arrow; yolk sac oedema – red arrow at 48 hpf exposition to CECs + real matrix (A); Abnormal notochord formation at 96 hpf exposition to CECs + synthetic matrix (B); normal development at 96 hpf recorded in CECs + real matrix + MA-3 (C), CECs + real matrix + MB-2 (D) and control – synthetic water (E).

Exemplos: Nível 2 – Bioensaios de toxicidade aguda

Chemical Engineering Journal 430 (2022) 132639

Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/ce

A Novel ceramic tubular membrane coated with a continuous graphene-TiO₂ nanocomposite thin-film for CECs mitigation

Pedro H. Presumido ^a, Lucrécio F. dos Santos ^b, Teresa Neuparth ^c, Miguel M. Santos ^{c,d}, Manuel Feliciano ^e, Ana Primo ^f, Hermenegildo Garcia ^f, Maja B. Đolić ^g, Vítor J.P. Vilar ^{a, f}

Os processos de tratamento avançados com membranas tubulares cerámicas diminuiram significativada toxicidade presente no efluente de ETAR testado

Ensaios crónicos/Longo-termo

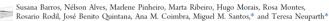
- Efeitos apicais
- Marcadores bioquímicos (Enzimas stress oxidativo)
- Omicas (transcritomica, metabolomica, epigenetica)

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

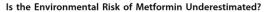
Metformin disrupts *Danio rerio* metabolism at environmentally relevant concentrations: A full life-cycle study


Susana Barros ^{a,b,1}, Marta Ribeiro ^{a,1}, Ana M. Coimbra ^{b,c}, Marlene Pinheiro ^{a,e}, Hugo Morais ^{a,e}, Nélson Alves ^{a,e}, Rosa Montes ^d, Rosario Rodil ^d, José Benito Quintana ^d, Miguel M. Santos ^{a,e,*}, Teresa Neuparth ^{a,**}

pubs.acs.org/est

Article

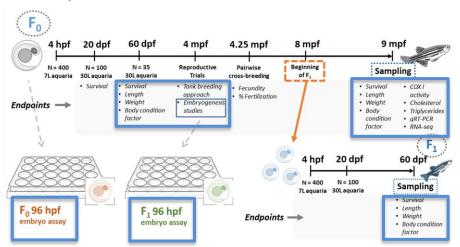
Are Fish Populations at Risk? Metformin Disrupts Zebrafish Development and Reproductive Processes at Chronic Environmentally Relevant Concentrations


- Efeitos apicais
- Marcadores bioquímicos
- Marcadores moleculares

Viewpoin

Unax Lertxundi,* Saioa Domingo-Echaburu, Susana Barros, Miguel Machado Santos, Teresa Neuparth, Iose Benito Quintana, Rosario Rodil, Rosa Montes, and Gorka Orive

España - Portugal



D. rerio exposure to MET

Control ncentrações de **Metfor**

3 concentrações de **Metformina** ambientalmente relevantes

- 390 ng/L
- 2 929 ng/L
- 14 423 ng/L

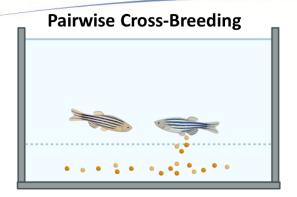
Concentrações Ambientais

145 - 56 600 ng/L

Table. MET long-term effects on sex ratio, weight, length, body condition factor, gonadosomatic and hepatosomatic index of D. rerio

Endpoints Apicais: Crescimeno

Gen	Sampling time	Treatment	Sex ratio	Length		Weight		К		GSI		HSI	
FO	96 hpf	390 ng/L											
		2 929 ng/L		-									
		14 423 ng/L											
	60 dpf	390 ng/L		1		1		1					
		2 929 ng/L											
		14 423 ng/L											
	9 mpf	390 ng/L											1
		2 929 ng/L						1					1
		14 423 ng/L		1		1			1				
F1	96 hpf	390 ng/L		1				****		****			
		2 929 ng/L		1									
		14 423 ng/L		1									
		390 ng/L											
	60 dpf	2 929 ng/L		1				-					
		14 423 ng/L						-					
				М	F	М	F	M	F	M	F	M	F



orctrl X ₽14 423



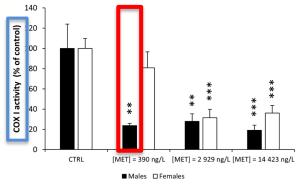
Table. Long-term effects of MET on F₀ zebrafish pairwise cross-breeding % of reproductive % un-activated Fecundity % Fertilization eggs/reproductive events with unactivated eggs event orctrl X Pctrl 286.4 ± 22.70 98.1 ± 0.70 0.0 ± 0.00 0.0 ± 0.00 o[™]14 423 X Q_{Ctrl} 22,6 ± 5,33* 198.8 ± 62.90# 88.5 ± 4.10* 56.0 ± 5.77*

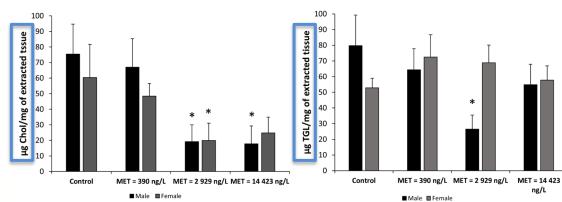
 97.2 ± 0.80

 0.0 ± 0.00

- Ovos não ativados
- Diminuição da fecudidade
- Diminuição da % de fertelização

 226.9 ± 39.70

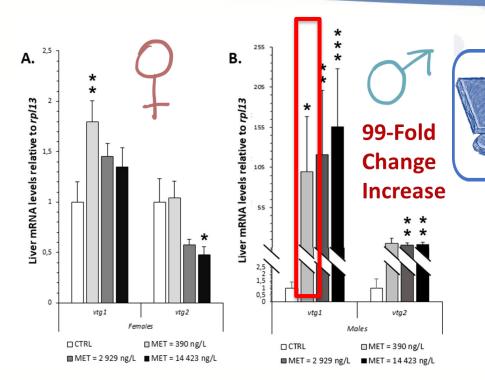



 0.0 ± 0.00

ovos não ativados

Interreg

España - Portugal



Endrocrine

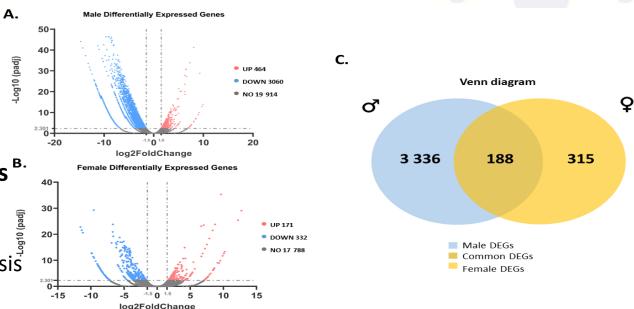
Disruption

Endpoints Moleculares

qRT-PCR

Relative mRNA levels of hepatic vtg1 and vtg2 in 9 month-old Fo D. rerio

España - Portugal



Endpoints Moleculares

RNA seq

Most relevant pathways affected:

- Lipid/energy metabolism
- Steroid hormone biosynthesis
- Reproduction

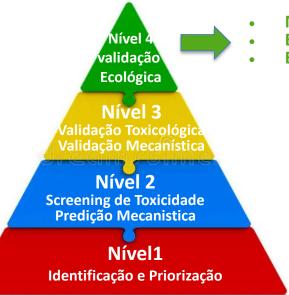
[METEFORMINA] - 390 ng/L:

- Interfere com processos bioquímicos e moleculares relacionados funções metabólicas nos machos de peixe-zebra **p** Efeitos no crescimento
- Afeta a biossíntese de hormonas esteroides e a expressão de vtg1 e vtg2 biminuição da taxa de fertilização e aumenta a presença de ovos não ativados

Implicações para a ____ Avaliação de Risco Ambiental

Metformina esta na 4 Watch List

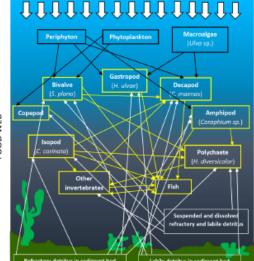
- Concentração Prevista Sem Efeito (**PNEC**)
- 1 030 µg/L
- Standard de qualidade ambiental (EQS)
- 160 µg/L


Valores de PNEC e EQS propostos para MET PUT Urgentemente Revistos

Exemplo: Nível 4 – Modelação Ecologica

- Modelação Ecológica
- Estudos com mesocosmos or microcosmos
- Bioacumulação na cadeia alimentar; transferência trófica

Exemplo: Nível 4 – Modelação Ecologica



Prioritizing the Effects of Emerging Contaminants on Estuarine **Production under Global Warming Scenarios**

Irene Martins 1,*, Joana Soares 1,† D. Teresa Neuparth 1 , Aldo F. Barreiro 1, Cândido Xavier 2 , Carlos Antunes 1,30 and Miguel M. Santos 1,2,*

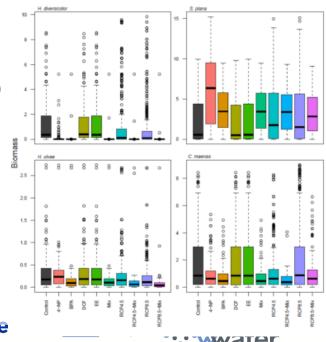
Modelo desenvolvido no AQUATOX:

- Bisfenol A (BPA), 4-Nonylphenol (4-NP), 17α-etinil-estradiol (EE2) e Diclofenac (DCF) na concentração dos EQS propostos
- 2 aumentos de temperatura de acordo com as previsões do IPCC $(RCP 4.5 + 1.8^{\circ}C/RCP 8.5 + 3.7^{\circ}C)$
- Relações tróficas das comunidades estuarinas

Exemplo: Nível 4 – Modelação Ecologica

Article

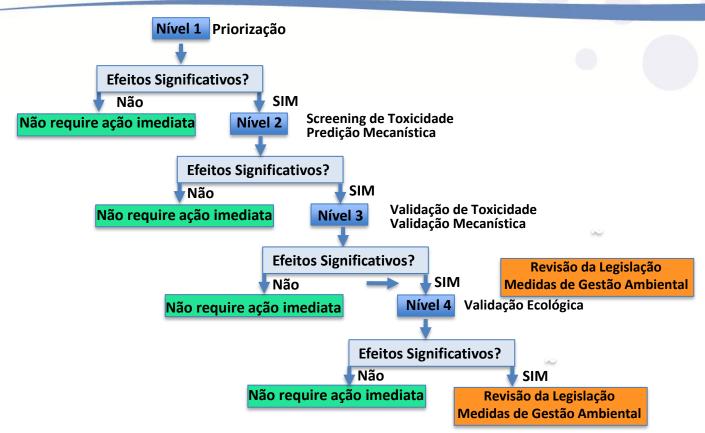
Prioritizing the Effects of Emerging Contaminants on Estuarine Production under Global Warming Scenarios


Irene Martins ^{1,*}, Joana Soares ^{1,†}, Teresa Neuparth ¹, Aldo F. Barreiro ¹, Cândido Xavier ², Carlos Antunes ^{1,3} and Miguel M. Santos ^{1,2,*}

- BPA e 4-NP induzem efeitos adversos a médio prazo (10 anos)
- Efeito sinergístico adverso dos 4 CECs no ecossistema
- Aumentos de temperatura testados têm um impacto inferior ao da mistura dos 4CECs.

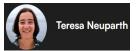
modelação ecológica:

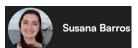
Apoiar o desenvolvimento de estratégias ambientais para reduzir os impactos ecológicos de stressores ambientais

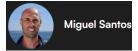


Inte

España - Portugal


Considerações Finais





Obrigado! Gracias!

Grupo Disruptores Endócrinos e Contaminantes Emergentes

tneuparth@ciimar.up.pt

