

Outline

Context

Solutions

Case-studies

Context

A growing global concern

With robust information and understanding on just 500 of them in water cycle

An anthropogenic origin of pollution: industrial, urban, domestic or agricultural

Suspected and proven health effects⁽³⁾
Potential biodiversity loss⁽⁴⁾

Media attention and Public concern

76%

of citizens consider the risk of pollution impacts on resources & heath as serious and immediate*

What are we facing?

Other organic contaminants from chemical industries, urban

and domestic use

Pesticides, Fungicides, Herbicides & their metabolites

Heavy metals Arsenic, Cadmium, Lead, etc.

MICROPOLLUTANTS

Substances that are in the environment at very low concentration due to human activity, presenting a significant risk for human health and the

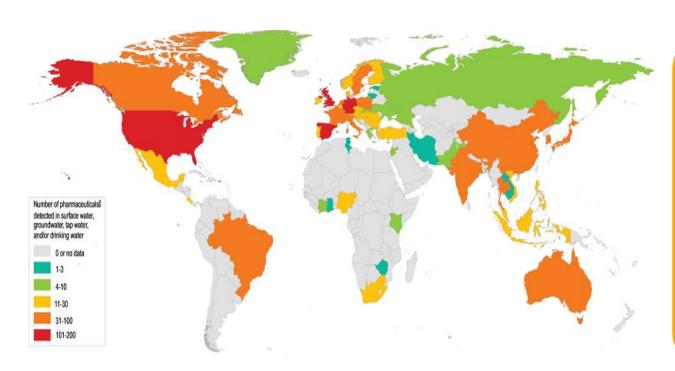
environment.

PFAS

Nanomaterial

Per- and polyfluoroalkyl substances

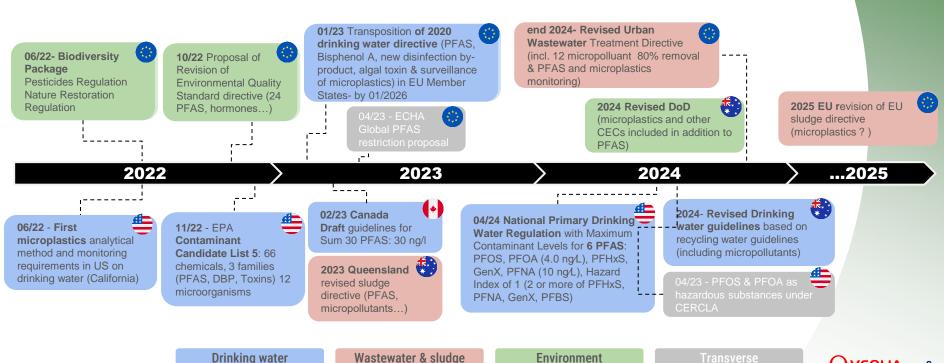
Pharmaceuticals & hygiene products


Microplastics

Pathogens

A closer look to pharmaceuticals in surface water

- More than 3000 active pharmaceutical ingredients worldwide
- Major transfer to environment : WWTP Discharges
- 631 pharmaceutical substances detected in resource and, wastewater in more than 71 countries
- Levels : ng/l-μg/l
- The most detected:


 Diclofenac, Tetracycline,
 Carbamazepine,
 Sulfamethoxazole,
 Ibuprofen and hormones

Detection frequency of pharmaceuticals in environment (Aus de Beek et al, <u>UBA 2016</u>)

Evolving knowledge & accelerated regulation

A ramp-up in regulation: more parameters, stricter thresholds, more segmentation

Solutions

MUNICIPALITIES

Global value proposition within 5 pillars

An end-to-end approach

To anticipate emerging issues and offer solutions to contribute to a healthy and safe living environment for the future generations

Global value proposition within 5 pillars

Diagnosis and mapping of pollution emitters: Actipol, Octopus **Control** of industrial effluent discharge in WWTP

Activated carbon

Membranes

Target analysis and water fingerprint

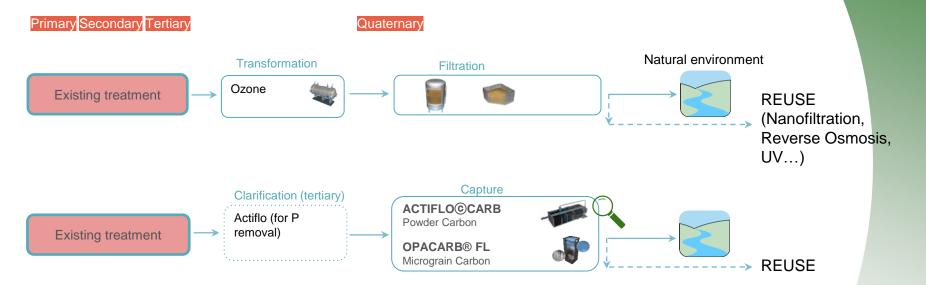
By-product management

Micropollutant characterization: Analysis, water fingerprint

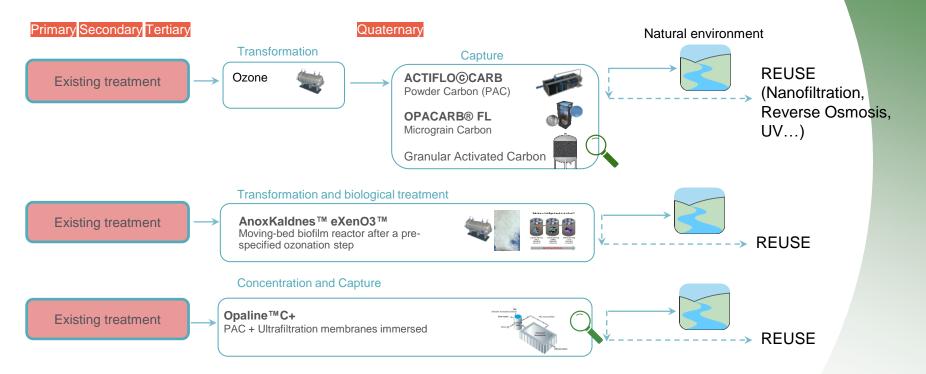
4000

Partnership and support on changes in agricultural practices

Ozonation


Bioassays for impact monitoring

R&D on by-product regeneration

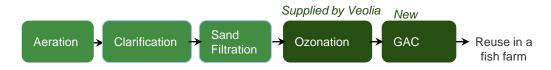

Public awareness and involvement actions

Combined processes: a combination of technologies Online monitoring for process control and pollution alert

Focus on treatment - stand alone

Focus on treatment - Combined technologies

Case studies


ARA Altenrhein 120 000 p.e. WWTP (Switzerland) Combination of Ozonation and GAC - Full scale plant

| Challenge

- Ensure sustainable water protection for several decades
- Comply with CH regulation

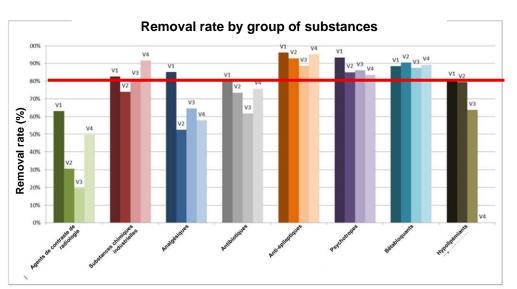
| Solution

Combination of ozonation and granular activated carbon to gain the benefit of both oxidation of the organic compounds and retention of remaining contaminants and ozone transformation products

>90% removal of 12 substances required by Swiss regulation since 2019

Optimization of operational costs with the extension of **GAC lifetime** from

Herford WWTP (Deutschland)


ACTIFLO©CARB (Powder Activated Carbon) - Full scale plant

Existing wastewater treatment work built 1998 by VWT (Multiflo + Biostyr)

Micropollutants removal using Actiflo Carb & hydrotech discfilter (10 µm mesh) - 3 x 300 m³/h

80% removal of industrial cleaning agents & most pharmaceuticals

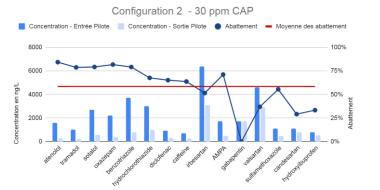
Arcachon - SIBA 150 000 p.e. WWTP (France)

Combined treatment - pilot

| Challenge

- Protect a sensitive marine environment
- Maintain activities (fishing and oyster farming)

| Solution: An industrial prototype to demonstrate treatment efficiency


- Automatic operation & remote management
- Rigorous monitoring: Physico-chemical & bacteriological parameters; Micropollutants

Conclusion

CONCLUSION

The treatment of micropollutants is a challenge for sanitation systems:

- More than 100,000 chemical substances listed in Europe and less than hundred substances regulated in living environment
- Regulation is evolving: monitoring and treatment requirements
- Fighting against the infinitely small is not so simple, but solutions exist. To meet this challenge, proven water treatment technologies can treat micropollutants. We have references
- Choice of treatment process on a case-by-case basis (water quality, land use, possible fate of sludge, etc.)
- Challenges remain on the sustainability, on the safe management of by-product ⇒ Innovation program